Stereoselective Synthesis of 2,6-cis- and 2,6-trans-Piperidines through Organocatalytic Aza-Michael Reactions: A Facile Synthesis of $(+)$ -Myrtine and $(-)$ -Epimyrtine

Yongcheng Ying, Hyoungsu Kim, and Jiyong Hong*

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

jiyong.hong@duke.edu

Received December 17, 2010

ORGANIC

ABSTRACT

Both 2,6-*cis*- and 2,6-*trans*-piperidines were prepared from common substrates through organocatalytic aza-Michael reactions promoted by the
com-disubstituent effect in conjunction with dithiane counling reactions. The o *gem*-disubstituent effect in conjunction with dithiane coupling reactions. The organocatalytic aza-Michael reaction enabled a facile synthesis of
(⊥)-myrtine and (—)-enimyrtine from a common substrate $(+)$ -myrtine and $(-)$ -epimyrtine from a common substrate.

Structurally complex piperidines are found in a wide range of biologically interesting natural products. In particular, 2,6-disubstituted piperidines have attracted considerable interest because of their therapeutic potential.¹ Although an increasing amount of interest has focused on the generation of 2,6-disubstituted piperidines, $2,3$ there are few methods that enable the synthesis of both 2,6-cis- and 2,6-trans-piperidines from a common substrate. Moreover, it is surprising that the organocatalytic aza-Michael reaction has rarely been used for the stereoselective synthesis of piperidines.^{4,5}

^{(1) (}a) Struntz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic: New York, 1985; Vol. 26, pp 89-193. (b) Schneider, M. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S.W., Ed.; Pergamon: Oxford, 1996; Vol. 10, pp 155-299.

⁽²⁾ For reviews on the synthesis of 2,6-disubstituted piperidines, see: (a) Weintraub, J. S.; Sabol, P. M.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953–2989. (b) Buffat, M. G. P. Tetrahedron 2004, 60, 1701–1729. (c) Cossy, J. Chem. Rec. 2005, 5, 70–80.

⁽³⁾ For recent examples of the synthesis of 2,6-disubstituted piperidines, see: (a) Gnamm, C.; Krauter, C. M.; Broedner, K.; Helmchen, G. Chem. Eur. J. 2009, 15, 2050–2054. (b) Gnamm, C.; Broedner, K.; Krauter, C. M.; Helmchen, G. Chem. Eur. J. 2009, 15, 10514–10532. (c) Kumar, R. S. C.; Sreedhar, E.; Reddy, V. G.; Babu, K. S.; Rao, J. M. Tetrahedron: Asymmetry 2009, 20, 1160–1163. (d) Kumar, R. S. C.; Reddy, G. V.; Babu, K. S.; Rao, J. M. Chem. Lett. 2009, 38, 564-565. (e) Guerinot, A.; Serra-Muns, A.; Gnamm, C.; Bensoussan, C.; Reymond, S.; Cossy, J. Org. Lett. 2010, 12, 1808–1811.

Herein, we report the stereoselective synthesis of both 2,6-cis- and 2,6-trans-piperidines from common substrates through the organocatalytic aza-Michael reaction promoted by the *gem*-disubstituent effect and its application to a facile synthesis of $(+)$ -myrtine and $(-)$ -epimyrtine.

Scheme 1. Synthesis of 2,6-cis-Piperidine 5 through an Intramolecular Aza-Michael Reaction

To test the feasibility of the tandem allylic oxidation/ aza-Michael reaction 6 in the synthesis of 2,6-disubstituted piperidines, we prepared substrate (Z) -3 by coupling⁷ allyl alcohol (Z) -1⁶ with the readily available Ts-protected chiral aziridine 2 and subjected it to $MnO₂$ -oxidation conditions (Scheme 1). However, due to the poor nucleophilicity of sulfonamide 4, the tandem allylic oxidation/aza-Michael reaction of (Z) -3 in the presence of MnO₂ failed to provide the desired 2,6-cis-piperidine 5. Instead, it resulted in the exclusive formation of the intermediate (Z) -enal 4 (80%).

We hypothesized that the activation of the conjugate acceptor would help overcome the poor nucleophilicity of 4 in the aza-Michael reaction. To test this hypothesis, we converted 4 to the corresponding iminium ion by treatment

(4) For a review on the organocatalytic aza-Michael reaction, see: Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058– 11076.

(6) For an analogous tandem allylic oxidation/oxa-Michael reaction, see: (a) Kim, H.; Park, Y.; Hong, J. Angew. Chem., Int. Ed. 2009, 48, 7577–7581. (b) Kim, H.; Hong, J. Org. Lett. 2010, 12, 2880–2883.

(7) (a) Smith, A. B., III; Kim, D.-S. Org. Lett. 2004, 6, 1493–1495. (b) Smith, A. B., III; Kim, D.-S. Org. Lett. 2005, 7, 3247–3250. (c) Smith, A. B., III; Kim, D.-S. J. Org. Chem. 2006, 71, 2547–2557.

(8) The relative stereochemisry of the major diastereomer of the reaction was determined to be cis by 2D NMR spectroscopy (see the Supporting Information for details).

with pyrrolidine TFA (Scheme 1). As expected, the iminium activation of 4 dramatically promoted the aza-Michael reaction to successfully provide the desired 2,6-cis-piperidine 5.⁸ However, the stereoselectivity of the substrate-controlled aza-Michael reaction was modest $(5:6 = 4:1)$.

To further improve the stereoselectivity of the aza-Michael reaction, we decided to test chiral organocatalysts.^{4,5,9} When (R) -I¹⁰ or (R) -II^{10a} was employed (Scheme 2), the desired 2, 6-cis-piperidine 5 was obtained with good stereoselectivity $(dr = 11:1)^{11}$ The catalyst $(2R, 5R)$ -III¹² also provided 5, but in modest stereoselectivity ($dr = 4:1$). When (S)-I was used for the aza-Michael reaction of 4, the 2,6-trans-piperidine 6 was obtained as the major diastereomer $(dr = 3:1)$, demonstrating that the synthesis of both 2,6-cis- and 2,6-trans-piperidines could be achieved from a common substrate through the organocatalytic aza-Michael reactions.13 To the best of our

⁽⁵⁾ For examples of the synthesis of monosubstituted or benzofused piperidines by the organocatalytic aza-Michael reaction, see: (a) Takasu, K.; Maiti, S.; Ihara, M. Heterocycles 2003, 59, 51-55. (b) Fustero, S.; Jiménez, D.; Moscardó, J.; Catalán, S.; del Pozo, C. Org. Lett. 2007, 9, 5283–5286. (c) Carlson, E. C.; Rathbone, L. K.; Yang, H.; Collett, N. D.; Carter, R. G. J. Org. Chem. 2008, 73, 5155–5158. (d) Fustero, S.; Moscardo, J.; Jimenez, D.; Perez-Carrion, M. D.; Sanchez-Rosello, M.; del Pozo, C. Chem. Eur. J. 2008, 14, 9868–9872.

⁽⁹⁾ For recent examples of organocatalytic aza-Michael reaction, see: (a) Uria, U.; Vicario, J. L.; Badia, D.; Carrillo, L. Chem. Commun. 2007, 2509–2511. (b) Perdicchia, D.; Jørgensen, K. A. J. Org. Chem. 2007, 72, 3565–3568. (c) Li, H.; Zu, L.; Xie, H.; Wang, J.; Wang, W. Chem. Commun. 2008, 5636–5638. (d) Lin, Q.; Meloni, D.; Pan, Y.; Xia, M.; Rodgers, J.; Shepard, S.; Li, M.; Galya, L.; Metcalf, B.; Yue, T.-Y.; Liu, P.; Zhou, J. Org. Lett. 2009, 11, 1999–2002. (e) Enders, D.; Wang, C.; Raabe, G. Synthesis 2009, 4119–4124. (f) Lv, J.; Wu, H.; Wang, Y. Eur. J. Org. Chem. 2010, 11, 2073–2083.

^{(10) (}a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794–797. (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212–4215.

⁽¹¹⁾ A variety of solvents were tested to further optimize the reaction conditions, and CH₂Cl₂ proved to be the most effective for the reaction (see the Supporting Information for details).

⁽¹²⁾ Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173.

⁽¹³⁾ To assess the effect of protecting groups on stereochemical outcome, we prepared the corresponding Boc- and Cbz-carbamates of 4 and subjected them to the organocatalytic aza-Michael reaction conditions. Both (R) -I and (S) -I provided 2,6-cis-piperidines as the major diastereomer (dr = $2-20:1$; see the Supporting Information for details).

knowledge, the stereoselective synthesis of both 2,6-cis- and 2,6-trans-piperidines from a common substrate has not been achieved for intramolecular organocatalytic aza-Michael reaction, although it has been appeared in a few other reactions such as Ir-catalyzed allylic substitutions.^{3a,b}

modest to good stereoselectivities (up to 10:1 dr, entries 1-4). However, sterically hindered tertiary amine 8e did not afford the desired piperidines (Table 1, entry 5). It is noteworthy that higher stereoselectivities were observed with (E) -enals compared with the corresponding (Z) -enals.

Table 1. Substrate Scope of the Organocatalytic Aza-Michael Reaction

entry	substrate	conditions ^a	major product (yield^b)	$\mathrm{d} \mathrm{r}^c$
1	(Z) -8a	A	9a(91%)	11:1
		в	10a $(82%)$	1:3
	(E) -8a	A	9a $(93%)$	15:1
		в	10a(86%)	1:5
$\overline{2}$	(Z) -8b	A	9b (90%)	>15:1
		B	10b $(75%)$	1:2
	(E) -8 \bf{b}	A	9b $(97%)$	>20:1
		B	10b (80%)	1:4
3	(Z) -8 c	A	9c $(78%)$	10:1
		в	10c $(78%)$	1:8
	(E) -8 c	A	9c $(87%)$	12:1
		B	10 $c(79%)$	1:10
4	(Z) -8d	A	9d (90%)	15:1
		B	10d $(86%)$	1:1
5	(Z) -8e	A	NR ^d	NA^e
		в	NR ^d	NA^e

^a A: (1) MnO₂, CH₂Cl₂, 25 °C, 3 h, filtration; (2) (S)-I·BzOH (20 mol %), CH₂Cl₂, 0 °C, 7–45 h. **B**: (1) MnO₂, CH₂Cl₂, 25 °C, 3 h, filtration;
(2) (R)-I·BzOH (20 mol %), CH₂Cl₂, 0 °C, 9–67 h. ^bCombined yield of the isolated 2,6-cis- and 2,6-trans-piperidines. ^c The diastereomeric ratio (2,6-cispiperidine:2,6-trans-piperidine) was determined by integration of the ¹H $\widehat{N}MR$ spectrum of the crude product. $\binom{d}{k}N$ reaction. $\binom{e}{k}N$ applicable.

To investigate the scope and stereochemical outcome of the organocatalytic aza-Michael reaction with respect to substituents at the C2 position, we prepared sulfonamides 8a-e by coupling 1 with the commercially or readily available chiral aziridines $7a-e$ and subjected them to the allylic oxidation/organocatalytic aza-Michael reaction (Table 1). We were pleased to find that the aza-Michael reaction of $8a-d$ in the presence of (S) -I proceeded smoothly to provide the corresponding 2,6-cis-piperidines $9a-d$ with good to excellent stereoselectivities (up to $20:1$ dr, entries $1-4$). In addition, when (R) -I was used for the aza-Michael reaction of 8a-d, 2,6-trans-piperidines 10a-d were obtained with

Figure 1. Proposed mechanism of cyclization of (E) - and (Z) iminium ions.

The origin of the higher stereoselectivity with (S)-I relative to (R) -I can be explained as illustrated in Figure 1. The (E) -enal forms a "match pair"¹⁴ with (S) -I and proceeds through conformer A to provide the 2,6-cis-piperidine with excellent stereoselectivity. However, the combination of (R) -I and (E) -enal produces a "mismatch pair", which leads to the formation of multiple competing transition states to give 2,6-trans-piperidine with lower stereoselectivity (conformer D). The reason for the higher stereoselectivity with (E) -enals relative to (Z) -enals can be rationalized on the basis that while the (Z) -iminium ion intermediates undergo a cyclization to provide the corresponding 2,6-trans-piperidine (through conformer B in "match pair") and 2,6-cispiperidine (through conformer C in "mismatch pair"), competitive and rapid isomerization to the corresponding (E) -iminium ion intermediates¹⁵ could occur to eventually provide the opposite diastereomers, which results in lower stereoselectivity relative to (E) -iminium ion intermediates.

We hypothesized that the 1,3-dithiane group would be critical to overcome the low reactivity of sulfonamides by promoting an ideal conformation for cyclization through the g em-disubstituent effect.¹⁶ To test this hypothesis, we prepared substrate 11 with no gem-disubstituent effect and

⁽¹⁴⁾ Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. 1985, 24, 1–30.

⁽¹⁵⁾ Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32–33.

⁽¹⁶⁾ Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735–1766.

Scheme 3. gem-Disubstituent Effect on Stereoselectivity and Reaction Rate

subjected it to the reaction conditions (Scheme 3). Although the organcatalytic aza-Michael reaction of 11 in the presence of (R) -I provided 2,6-*cis*-piperidine 12 with good stereoselectivity (dr = 11:1), the yield was poor $(<15\%)$. The organocatalytic aza-Michael reaction of 11 in the presence of (S)-I failed to provide the corresponding 2,6-trans-piperidine; instead, decomposition of 11 was observed. These data clearly demonstrate that the gem-disubstituent effect by the 1,3-dithiane group is critical to overcoming the poor nucleophilicity of sulfonamides and improving the yield.

To demonstrate the versatility of the organocatalytic aza-Michael reactions for the stereoselective synthesis of 2,6-disubstituted piperidines, we embarked on the facile synthesis of $(-)$ -epimyrtine (16) and $(+)$ -myrtine (18) (Scheme 4).^{17,18} We envisioned that both 2,6-cis- and 2,6trans-piperidines embedded in 16 and 18, respectively, could be constructed from a common substrate using the organocatalytic aza-Michael reactions.

Witting reaction of aldehyde 9b with methyl (triphenylphosphoranylidene)acetate followed by dissolving metal reduction of the resulting (E) - α , β -unsaturated ester 13 afforded ester 14 with accompanying deprotection of the Ts group. Li AH_4 -reduction, mesylation, and subsequent intramolecular N-alkylation provided quinolizidine 15.

(19) (a) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287–290. (b) Fleming, F. F.; Funk, L.; Altundas, R.; Tu, Y. J. Org. Chem. 2001, 66, 6502–6504.

(20) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408.

Scheme 4. Synthesis of $(-)$ -Epimyrtine and $(+)$ -Myrtine

Final deprotection of 1,3-dithiane group in 15 in the presence of bis(trifluoroacetoxy)iodo benzene¹⁹ completed the synthesis of $(-)$ -epimyrtine (16).

Starting from an inseparable mixture of 10b and 9b (4:1), Still–Gennari olefination²⁰ followed by a separation of the resulting α , β -unsaturated esters provided (Z)- α , β -unsaturated ester 17. Compound 17 was converted to $(+)$ -myrtine (18) following the procedures described above.

In summary, the organocatalytic aza-Michael reaction was explored for the stereoselective synthesis of 2,6-disubstituted piperidines. The organocatalytic aza-Michael reactions allowed the synthesis of both 2,6-cis- and 2,6-transpiperidines from the common substrates. The reaction proceeded with modest to excellent stereoselectivities (up to 20:1 dr) and yields. The 1,3-dithiane group allowed for rapid access to substrates and promoted the intramolecular aza-Michael reaction via the gem-disubstituent effect. We also demonstrated the utility of the combination of the organocatalytic aza-Michael reaction and the dithiane coupling reaction in the concise synthesis of $(-)$ -epimyrtine (16) and $(+)$ -myrtine (18) from the common intermediate. This synthetic method would be broadly applicable to the efficient synthesis of a diverse set of bioactive natural products with 2,6-disubstituted piperidines.

Acknowledgment. This work was supported by Duke University. We are grateful to the NCBC (Grant No. 2008- IDG-1010) for funding of NMR instrumentation.

Supporting Information Available. General experimental procedures including spectroscopic and analytical data along with copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁷⁾ For the isolation of $(+)$ -myrtine and $(-)$ -epimyrtine, see: (a) Slosse, P.; Hootele, C. Tetrahedron Lett. 1978, 397–398. (b) Slosse, P.; Hootele, C. Tetrahedron 1981, 37, 4287–4294.

⁽¹⁸⁾ For the synthesis of myrtine and epimyrtine, see: (a) Slosse, P.; Hootele, C. Tetrahedron Lett. 1979, 19, 4587–4588. (b) King, F. D. J. Chem. Soc., Perkin Trans. 1 1986, 447–453. (c) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 4549–4552. (d) Comins, D. L.; Weglarz, M. A.; O'Connor, S. Tetrahedron Lett. 1988, 29, 1751–1754. (e) Comins, D. L.; LaMunyon, D. H. Tetrahedron Lett. 1989, 30, 5053–5056. (f) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807–5809. (g) Gelas-Mialhe, Y.; Gramain, J.-C.; Louvet, A.; Remuson, R. Tetrahedron Lett. 1992, 33, 73–76. (h) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. Tetrahedron Lett. 1993, 34, 2729-2732. (i) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem. 1995, 60, 717–722. (j) Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Perrin, B.; Remuson, R. Tetrahedron: Asymmetry 1998, 9, 1823–1828. (k) Davis, F. A.; Zhang, Y.; Anilkumar, G. J. Org. Chem. 2003, 68, 8061–8064. (l) Back, T. G.; Hamilton, M. D.; Lim, V. J. J.; Parvez, M. J. Org. Chem. 2005, 70, 967–972. (m) Amorde, S. M.; Judd, A. S.; Martin, S. F. Org. Lett. 2005, 7, 2031–2033. (n) Davis, F. A.; Xu, H.; Zhang, J. J. Org. Chem. 2007, 72, 2046–2052. (o) Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 3464–3466. (p) Amorde, S. M.; Jewett, I. T.; Martin, S. F. Tetrahedron 2009, 65, 3222–3231.