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ABSTRACT

Both 2,6-cis- and 2,6-trans-piperidines were prepared from common substrates through organocatalytic aza-Michael reactions promoted by the
gem-disubstituent effect in conjunction with dithiane coupling reactions. The organocatalytic aza-Michael reaction enabled a facile synthesis of
(þ)-myrtine and (-)-epimyrtine from a common substrate.

Structurally complex piperidines are found in a wide
range of biologically interesting natural products. In par-
ticular, 2,6-disubstituted piperidines have attracted con-
siderable interest because of their therapeutic potential.1

Although an increasing amount of interest has focused on
the generation of 2,6-disubstituted piperidines,2,3 there are

few methods that enable the synthesis of both 2,6-cis- and
2,6-trans-piperidines from a common substrate. More-
over, it is surprising that the organocatalytic aza-Michael
reaction has rarely been used for the stereoselective synthe-
sis of piperidines.4,5
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Herein, we report the stereoselective synthesis of both
2,6-cis- and 2,6-trans-piperidines from common substrates
through the organocatalytic aza-Michael reaction pro-
moted by the gem-disubstituent effect and its application
to a facile synthesis of (þ)-myrtine and (-)-epimyrtine.

To test the feasibility of the tandem allylic oxidation/
aza-Michael reaction6 in the synthesis of 2,6-disubstituted
piperidines, we prepared substrate (Z)-3 by coupling7

allyl alcohol (Z)-16 with the readily available Ts-protected
chiral aziridine 2 and subjected it to MnO2-oxidation con-
ditions (Scheme1).However, due to thepoornucleophilicity
of sulfonamide 4, the tandem allylic oxidation/aza-Michael
reaction of (Z)-3 in the presence of MnO2 failed to provide
the desired 2,6-cis-piperidine 5. Instead, it resulted in the
exclusive formation of the intermediate (Z)-enal 4 (80%).
We hypothesized that the activation of the conjugate

acceptor would help overcome the poor nucleophilicity of
4 in the aza-Michael reaction. To test this hypothesis, we
converted4 to the corresponding iminium ionby treatment

with pyrrolidine 3TFA(Scheme1).As expected, the iminium
activation of 4 dramatically promoted the aza-Michael reac-
tion to successfully provide the desired 2,6-cis-piperidine 5.8

However, the stereoselectivityof the substrate-controlledaza-
Michael reaction was modest (5:6= 4:1).

To further improve the stereoselectivity of the aza-Michael
reaction, we decided to test chiral organocatalysts.4,5,9 When
(R)-I10 or (R)-II10a was employed (Scheme 2), the desired 2,
6-cis-piperidine 5 was obtained with good stereoselectivity
(dr=11:1).11 The catalyst (2R,5R)-III12 also provided 5, but
inmodest stereoselectivity (dr=4:1).When (S)-Iwasused for
the aza-Michael reaction of 4, the 2,6-trans-piperidine 6 was
obtained as themajor diastereomer (dr=3:1), demonstrating
that the synthesis of both 2,6-cis- and 2,6-trans-piperidines
could be achieved from a common substrate through the
organocatalytic aza-Michael reactions.13 To the best of our

Scheme 1. Synthesis of 2,6-cis-Piperidine 5 through an Intra-
molecular Aza-Michael Reaction

Scheme 2. Organocatalytic Aza-Michael Reactions for the
Synthesis of 2,6-cis- and 2,6-trans-Piperidines
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knowledge, the stereoselective synthesis of both 2,6-cis- and
2,6-trans-piperidines from a common substrate has not been
achieved for intramolecular organocatalytic aza-Michael
reaction, although it has been appeared in a few other
reactions such as Ir-catalyzed allylic substitutions.3a,b

To investigate the scope and stereochemical outcome of
the organocatalytic aza-Michael reaction with respect to
substituents at the C2 position, we prepared sulfonamides
8a-e by coupling 1 with the commercially or readily avail-
able chiral aziridines 7a-e and subjected them to the allylic
oxidation/organocatalytic aza-Michael reaction (Table 1).
We were pleased to find that the aza-Michael reaction of
8a-d in thepresenceof (S)-Iproceeded smoothly toprovide
the corresponding 2,6-cis-piperidines 9a-d with good to
excellent stereoselectivities (up to 20:1 dr, entries 1-4). In
addition, when (R)-Iwas used for the aza-Michael reaction
of 8a-d, 2,6-trans-piperidines 10a-d were obtained with

modest to good stereoselectivities (up to 10:1 dr, entries
1-4).However, sterically hindered tertiary amine 8edid not
afford the desired piperidines (Table 1, entry 5). It is
noteworthy that higher stereoselectivities were observed
with (E)-enals compared with the corresponding (Z)-enals.

The origin of the higher stereoselectivity with (S)-I rela-
tive to (R)-I can be explained as illustrated in Figure 1. The
(E)-enal forms a “match pair”14 with (S)-I and proceeds
through conformer A to provide the 2,6-cis-piperidine with
excellent stereoselectivity. However, the combination of
(R)-I and (E)-enal produces a “mismatch pair”, which leads
to the formation of multiple competing transition states to
give 2,6-trans-piperidine with lower stereoselectivity (con-
former D). The reason for the higher stereoselectivity with
(E)-enals relative to (Z)-enals can be rationalized on the
basis that while the (Z)-iminium ion intermediates undergo
a cyclization to provide the corresponding 2,6-trans-piper-
idine (through conformer B in “match pair”) and 2,6-cis-
piperidine (through conformer C in “mismatch pair”),
competitive and rapid isomerization to the corresponding
(E)-iminium ion intermediates15 could occur to eventually
provide the opposite diastereomers, which results in lower
stereoselectivity relative to (E)-iminium ion intermediates.
We hypothesized that the 1,3-dithiane group would be

critical to overcome the low reactivity of sulfonamides by
promoting an ideal conformation for cyclization through the
gem-disubstituent effect.16 To test this hypothesis, we pre-
pared substrate 11 with no gem-disubstituent effect and

Table 1. Substrate Scope of the Organocatalytic Aza-Michael
Reaction

entry substrate conditionsa major product (yieldb) drc

1 (Z)-8a A 9a (91%) 11:1

B 10a (82%) 1:3

(E)-8a A 9a (93%) 15:1

B 10a (86%) 1:5

2 (Z)-8b A 9b (90%) >15:1

B 10b (75%) 1:2

(E)-8b A 9b (97%) >20:1

B 10b (80%) 1:4

3 (Z)-8c A 9c (78%) 10:1

B 10c (78%) 1:8

(E)-8c A 9c (87%) 12:1

B 10c (79%) 1:10

4 (Z)-8d A 9d (90%) 15:1

B 10d (86%) 1:1

5 (Z)-8e A NRd NAe

B NRd NAe

a
A: (1) MnO2, CH2Cl2, 25 �C, 3 h, filtration; (2) (S)-I 3BzOH (20

mol%), CH2Cl2, 0 �C, 7-45 h.B: (1) MnO2, CH2Cl2, 25 �C, 3 h, filtration;
(2) (R)-I 3BzOH (20mol%),CH2Cl2, 0 �C, 9-67 h. bCombined yield of the
isolated2,6-cis- and2,6-trans-piperidines. cThediastereomeric ratio (2,6-cis-
piperidine:2,6-trans-piperidine) was determined by integration of the 1H
NMR spectrum of the crude product. dNo reaction. eNot applicable.

Figure 1. Proposed mechanism of cyclization of (E)- and (Z)-
iminium ions.
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subjected it to the reaction conditions (Scheme 3). Although
the organcatalytic aza-Michael reaction of 11 in the presence
of (R)-I provided 2,6-cis-piperidine 12 with good stereo-
selectivity (dr = 11:1), the yield was poor (<15%). The
organocatalytic aza-Michael reactionof 11 in the presenceof
(S)-I failed to provide the corresponding 2,6-trans-piperi-
dine; instead, decomposition of 11was observed. These data
clearly demonstrate that the gem-disubstituent effect by the
1,3-dithiane group is critical to overcoming the poor nucleo-
philicity of sulfonamides and improving the yield.
To demonstrate the versatility of the organocatalytic

aza-Michael reactions for the stereoselective synthesis of
2,6-disubstituted piperidines, we embarked on the facile
synthesis of (-)-epimyrtine (16) and (þ)-myrtine (18)
(Scheme 4).17,18 We envisioned that both 2,6-cis- and 2,6-
trans-piperidines embedded in 16 and 18, respectively,
could be constructed from a common substrate using the
organocatalytic aza-Michael reactions.
Witting reaction of aldehyde 9b with methyl (triphenyl-

phosphoranylidene)acetate followed by dissolving metal
reduction of the resulting (E)-R,β-unsaturated ester 13

afforded ester 14 with accompanying deprotection of the
Ts group. LiAlH4-reduction, mesylation, and subsequent
intramolecular N-alkylation provided quinolizidine 15.

Final deprotection of 1,3-dithiane group in 15 in the
presence of bis(trifluoroacetoxy)iodobenzene19 completed
the synthesis of (-)-epimyrtine (16).
Starting froman inseparablemixture of 10b and 9b (4:1),

Still-Gennari olefination20 followedbya separation of the
resulting R,β-unsaturated esters provided (Z)-R,β-unsatu-
rated ester 17. Compound17was converted to (þ)-myrtine
(18) following the procedures described above.
In summary, the organocatalytic aza-Michael reaction

was explored for the stereoselective synthesis of 2,6-disub-
stituted piperidines. The organocatalytic aza-Michael re-
actions allowed the synthesis of both 2,6-cis- and 2,6-trans-
piperidines from the common substrates. The reaction pro-
ceededwithmodest to excellent stereoselectivities (up to 20:1
dr) and yields. The 1,3-dithiane group allowed for rapid
access to substrates and promoted the intramolecular aza-
Michael reaction via the gem-disubstituent effect. We also
demonstrated the utility of the combination of the organo-
catalytic aza-Michael reaction and the dithiane coupling
reaction in the concise synthesis of (-)-epimyrtine (16)
and (þ)-myrtine (18) from the common intermediate. This
synthetic method would be broadly applicable to the effi-
cient synthesis of a diverse set of bioactive natural products
with 2,6-disubstituted piperidines.
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Scheme 3. gem-Disubstituent Effect on Stereoselectivity and
Reaction Rate

Scheme 4. Synthesis of (-)-Epimyrtine and (þ)-Myrtine
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